Sunday, 15 October 2017

Bewegungsfreiheit Volatilität


Gleitende Mittelwerte - Einfache und exponentielle gleitende Mittelwerte - Einfache und exponentielle Einführung Die gleitenden Mittelwerte glatt machen die Preisdaten zu einem Trendfolger. Sie prognostizieren nicht die Kursrichtung, sondern definieren die aktuelle Richtung mit einer Verzögerung. Moving Averages Lag, weil sie auf vergangenen Preisen basieren. Trotz dieser Verzögerung, gleitende Durchschnitte helfen, glatte Preis-Aktion und Filter aus dem Lärm. Sie bilden auch die Bausteine ​​für viele andere technische Indikatoren und Overlays, wie Bollinger Bands. MACD und dem McClellan-Oszillator. Die beiden beliebtesten Arten von gleitenden Durchschnitten sind die Simple Moving Average (SMA) und die Exponential Moving Average (EMA). Diese Bewegungsdurchschnitte können verwendet werden, um die Richtung des Trends zu identifizieren oder potentielle Unterstützungs - und Widerstandswerte zu definieren. Here039s ein Diagramm mit einem SMA und einem EMA auf ihm: Einfache gleitende durchschnittliche Berechnung Ein einfacher gleitender Durchschnitt wird gebildet, indem man den durchschnittlichen Preis eines Wertpapiers über einer bestimmten Anzahl von Perioden berechnet. Die meisten gleitenden Mittelwerte basieren auf den Schlusskursen. Ein 5-tägiger einfacher gleitender Durchschnitt ist die fünftägige Summe der Schlusskurse geteilt durch fünf. Wie der Name schon sagt, ist ein gleitender Durchschnitt ein Durchschnitt, der sich bewegt. Alte Daten werden gelöscht, wenn neue Daten verfügbar sind. Dies bewirkt, dass sich der Durchschnitt entlang der Zeitskala bewegt. Unten ist ein Beispiel für einen 5-tägigen gleitenden Durchschnitt, der sich über drei Tage entwickelt. Der erste Tag des gleitenden Durchschnitts deckt nur die letzten fünf Tage ab. Der zweite Tag des gleitenden Mittelwerts fällt den ersten Datenpunkt (11) und fügt den neuen Datenpunkt (16) hinzu. Der dritte Tag des gleitenden Durchschnitts setzt sich fort, indem der erste Datenpunkt (12) abfällt und der neue Datenpunkt (17) addiert wird. Im obigen Beispiel steigen die Preise allmählich von 11 auf 17 über insgesamt sieben Tage. Beachten Sie, dass der gleitende Durchschnitt auch von 13 auf 15 über einen dreitägigen Berechnungszeitraum steigt. Beachten Sie auch, dass jeder gleitende Durchschnittswert knapp unter dem letzten Kurs liegt. Zum Beispiel ist der gleitende Durchschnitt für Tag eins gleich 13 und der letzte Preis ist 15. Preise der vorherigen vier Tage waren niedriger und dies führt dazu, dass der gleitende Durchschnitt zu verzögern. Exponentielle gleitende Durchschnittsberechnung Exponentielle gleitende Mittelwerte reduzieren die Verzögerung, indem mehr Gewicht auf die jüngsten Preise angewendet wird. Die Gewichtung des jüngsten Preises hängt von der Anzahl der Perioden im gleitenden Durchschnitt ab. Es gibt drei Schritte, um einen exponentiellen gleitenden Durchschnitt zu berechnen. Berechnen Sie zunächst den einfachen gleitenden Durchschnitt. Ein exponentieller gleitender Durchschnitt (EMA) muss irgendwo anfangen, so dass ein einfacher gleitender Durchschnitt als die vorherige Periode039s EMA in der ersten Berechnung verwendet wird. Zweitens, berechnen Sie die Gewichtung Multiplikator. Drittens berechnen Sie den exponentiellen gleitenden Durchschnitt. Die folgende Formel ist für eine 10-tägige EMA. Ein 10-Perioden-exponentieller gleitender Durchschnitt wendet eine 18,18 Gewichtung auf den jüngsten Preis an. Eine 10-Perioden-EMA kann auch als 18.18 EMA bezeichnet werden. Ein 20-Perioden-EMA wendet einen 9,52 - Wiegen auf den jüngsten Preis an (2 / (201) .0952). Beachten Sie, dass die Gewichtung für den kürzeren Zeitraum mehr ist als die Gewichtung für den längeren Zeitraum. In der Tat, die Gewichtung sinkt um die Hälfte jedes Mal, wenn die gleitende durchschnittliche Periode verdoppelt. Wenn Sie uns einen bestimmten Prozentsatz für eine EMA zuweisen möchten, können Sie diese Formel verwenden, um sie in Zeiträume zu konvertieren, und geben Sie dann diesen Wert als den EMA039s-Parameter ein: Nachstehend ist ein Kalkulationstabellenbeispiel für einen 10-tägigen einfachen gleitenden Durchschnitt und ein 10- Tag exponentiellen gleitenden Durchschnitt für Intel. Einfache gleitende Durchschnitte sind geradlinig und erfordern wenig Erklärung. Der 10-Tage-Durchschnitt bewegt sich einfach, sobald neue Preise verfügbar sind und alte Preise fallen. Der exponentielle gleitende Durchschnitt beginnt mit dem einfachen gleitenden Mittelwert (22.22) bei der ersten Berechnung. Nach der ersten Berechnung übernimmt die Normalformel. Da eine EMA mit einem einfachen gleitenden Durchschnitt beginnt, wird ihr wahrer Wert erst nach 20 oder späteren Perioden realisiert. Mit anderen Worten, der Wert auf der Excel-Tabelle kann sich aufgrund des kurzen Rückblicks von dem Diagrammwert unterscheiden. Diese Kalkulationstabelle geht nur zurück 30 Perioden, was bedeutet, dass der Einfluss der einfachen gleitenden Durchschnitt hatte 20 Perioden zu zerstreuen. StockCharts geht mindestens 250 Perioden (typischerweise viel weiter) für seine Berechnungen zurück, so dass die Effekte des einfachen gleitenden Durchschnitts in der ersten Berechnung vollständig abgebaut sind. Der Lagfaktor Je länger der gleitende Durchschnitt ist, desto stärker ist die Verzögerung. Ein 10-Tage-exponentieller gleitender Durchschnitt wird die Preise sehr eng umringen und sich kurz nach dem Kursumschlag wenden. Kurze gleitende Durchschnitte sind wie Schnellboote - flink und schnell zu ändern. Im Gegensatz dazu enthält ein 100-Tage gleitender Durchschnitt viele vergangene Daten, die ihn verlangsamen. Längere gleitende Durchschnitte sind wie Ozeantanker - lethargisch und langsam zu ändern. Es dauert eine größere und längere Kursbewegung für einen 100-Tage gleitenden Durchschnitt, um Kurs zu ändern. Die Grafik oben zeigt die SampP 500 ETF mit einer 10-tägigen EMA eng ansprechender Preise und einem 100-tägigen SMA-Schleifen höher. Selbst mit dem Januar-Februar-Rückgang hielt die 100-tägige SMA den Kurs und kehrte nicht zurück. Die 50-Tage-SMA passt irgendwo zwischen den 10 und 100 Tage gleitenden Durchschnitten, wenn es um den Verzögerungsfaktor kommt. Simple vs Exponential Moving Averages Obwohl es klare Unterschiede zwischen einfachen gleitenden Durchschnitten und exponentiellen gleitenden Durchschnitten, ist eine nicht unbedingt besser als die anderen. Exponentielle gleitende Mittelwerte haben weniger Verzögerungen und sind daher empfindlicher gegenüber den jüngsten Preisen - und den jüngsten Preisveränderungen. Exponentielle gleitende Mittelwerte drehen sich vor einfachen gleitenden Durchschnitten. Einfache gleitende Durchschnitte stellen dagegen einen wahren Durchschnittspreis für den gesamten Zeitraum dar. Als solches können einfache gleitende Mittel besser geeignet sein, um Unterstützungs - oder Widerstandsniveaus zu identifizieren. Die gleitende Durchschnittspräferenz hängt von den Zielen, dem analytischen Stil und dem Zeithorizont ab. Chartisten sollten mit beiden Arten von gleitenden Durchschnitten sowie verschiedene Zeitrahmen zu experimentieren, um die beste Passform zu finden. Die nachstehende Grafik zeigt IBM mit der 50-Tage-SMA in Rot und der 50-Tage-EMA in Grün. Beide gipfelten Ende Januar, aber der Rückgang in der EMA war schärfer als der Rückgang der SMA. Die EMA erschien Mitte Februar, aber die SMA setzte weiter unten bis Ende März. Beachten Sie, dass die SMA über einen Monat nach der EMA. Längen und Zeitrahmen Die Länge des gleitenden Mittelwerts hängt von den analytischen Zielen ab. Kurze gleitende Durchschnitte (5-20 Perioden) eignen sich am besten für kurzfristige Trends und den Handel. Chartisten, die sich für mittelfristige Trends interessieren, würden sich für längere bewegte Durchschnitte entscheiden, die 20-60 Perioden verlängern könnten. Langfristige Anleger bevorzugen gleitende Durchschnitte mit 100 oder mehr Perioden. Einige gleitende durchschnittliche Längen sind beliebter als andere. Die 200-Tage gleitenden Durchschnitt ist vielleicht die beliebteste. Wegen seiner Länge ist dies eindeutig ein langfristiger gleitender Durchschnitt. Als nächstes ist der 50-Tage gleitende Durchschnitt für den mittelfristigen Trend ziemlich populär. Viele Chartisten nutzen die 50-Tage-und 200-Tage gleitenden Durchschnitte zusammen. Kurzfristig war ein 10 Tage gleitender Durchschnitt in der Vergangenheit ziemlich populär, weil er leicht zu berechnen war. Man hat einfach die Zahlen addiert und den Dezimalpunkt verschoben. Trendidentifikation Die gleichen Signale können mit einfachen oder exponentiellen gleitenden Mittelwerten erzeugt werden. Wie oben erwähnt, hängt die Präferenz von jedem Individuum ab. Die folgenden Beispiele werden sowohl einfache als auch exponentielle gleitende Mittelwerte verwenden. Der Begriff gleitender Durchschnitt gilt für einfache und exponentielle gleitende Mittelwerte. Die Richtung des gleitenden Durchschnitts vermittelt wichtige Informationen über die Preise. Ein steigender Durchschnitt zeigt, dass die Preise im Allgemeinen steigen. Ein sinkender Durchschnittswert zeigt an, dass die Preise im Durchschnitt sinken. Ein steigender langfristiger gleitender Durchschnitt spiegelt einen langfristigen Aufwärtstrend wider. Ein sinkender langfristiger gleitender Durchschnitt spiegelt einen langfristigen Abwärtstrend wider. Das Diagramm oben zeigt 3M (MMM) mit einem 150-Tage-exponentiellen gleitenden Durchschnitt. Dieses Beispiel zeigt, wie gut bewegte Durchschnitte arbeiten, wenn der Trend stark ist. Die 150-Tage-EMA sank im November 2007 und wieder im Januar 2008. Beachten Sie, dass es einen Rückgang von 15 nahm, um die Richtung dieses gleitenden Durchschnitts umzukehren. Diese Nachlaufindikatoren identifizieren Trendumkehrungen, wie sie auftreten (am besten) oder nach deren Eintritt (schlimmstenfalls). MMM setzte unten in März 2009 und dann stieg 40-50. Beachten Sie, dass die 150-Tage-EMA nicht auftauchte, bis nach diesem Anstieg. Sobald es aber tat, setzte MMM die folgenden 12 Monate höher fort. Moving-Durchschnitte arbeiten brillant in starken Trends. Doppelte Frequenzweichen Zwei gleitende Mittelwerte können zusammen verwendet werden, um Frequenzweiche zu erzeugen. In der technischen Analyse der Finanzmärkte. John Murphy nennt dies die doppelte Crossover-Methode. Doppelte Crossover beinhalten einen relativ kurzen gleitenden Durchschnitt und einen relativ langen gleitenden Durchschnitt. Wie bei allen gleitenden Durchschnitten definiert die allgemeine Länge des gleitenden Durchschnitts den Zeitrahmen für das System. Ein System, das eine 5-Tage-EMA und eine 35-Tage-EMA verwendet, wäre kurzfristig. Ein System, das eine 50-tägige SMA - und 200-Tage-SMA verwendet, wäre mittelfristig, vielleicht sogar langfristig. Eine bullische Überkreuzung tritt auf, wenn der kürzere gleitende Durchschnitt über dem längeren gleitenden Durchschnitt kreuzt. Dies wird auch als goldenes Kreuz bezeichnet. Eine bärische Überkreuzung tritt ein, wenn der kürzere gleitende Durchschnitt unter dem längeren gleitenden Durchschnitt liegt. Dies wird als ein totes Kreuz bekannt. Gleitende Mittelübergänge erzeugen relativ späte Signale. Schließlich setzt das System zwei hintere Indikatoren ein. Je länger die gleitenden Durchschnittsperioden, desto größer die Verzögerung in den Signalen. Diese Signale funktionieren gut, wenn eine gute Tendenz gilt. Allerdings wird ein gleitender Durchschnitt Crossover-System produzieren viele whipsaws in Abwesenheit einer starken Tendenz. Es gibt auch eine Dreifach-Crossover-Methode, die drei gleitende Durchschnitte beinhaltet. Wieder wird ein Signal erzeugt, wenn der kürzeste gleitende Durchschnitt die beiden längeren Mittelwerte durchläuft. Ein einfaches Triple-Crossover-System könnte 5-Tage-, 10-Tage - und 20-Tage-Bewegungsdurchschnitte beinhalten. Das Diagramm oben zeigt Home Depot (HD) mit einer 10-tägigen EMA (grüne gepunktete Linie) und 50-Tage-EMA (rote Linie). Die schwarze Linie ist die tägliche Schließung. Mit einem gleitenden Durchschnitt Crossover hätte dazu geführt, dass drei Peitschen vor dem Fang eines guten Handels. Die 10-tägige EMA brach unterhalb der 50-Tage-EMA Ende Oktober (1), aber dies dauerte nicht lange, wie die 10-Tage zog zurück oben Mitte November (2). Dieses Kreuz dauerte länger, aber die nächste bärige Crossover im Januar (3) ereignete sich gegen Ende November Preisniveaus, was zu einer weiteren Peitsche führte. Dieses bärische Kreuz dauerte nicht lange, als die 10-Tage-EMA über die 50-Tage ein paar Tage später zurückging (4). Nach drei schlechten Signalen, schien das vierte Signal eine starke Bewegung als die Aktie vorrückte über 20. Es gibt zwei Takeaways hier. Erstens, Crossovers sind anfällig für whipsaw. Ein Preis oder Zeitfilter kann angewendet werden, um zu helfen, whipsaws zu verhindern. Händler könnten verlangen, dass die Crossover 3 Tage dauern, bevor sie handeln oder verlangen, dass die 10-Tage-EMA zu bewegen, über / unterhalb der 50-Tage-EMA um einen bestimmten Betrag vor handeln. Zweitens kann MACD verwendet werden, um diese Frequenzweichen zu identifizieren und zu quantifizieren. MACD (10,50,1) zeigt eine Linie, die die Differenz zwischen den beiden exponentiellen gleitenden Mittelwerten darstellt. MACD wird positiv während eines goldenen Kreuzes und negativ während eines toten Kreuzes. Der Prozentsatz-Oszillator (PPO) kann auf die gleiche Weise verwendet werden, um Prozentunterschiede anzuzeigen. Beachten Sie, dass MACD und das PPO auf exponentiellen gleitenden Durchschnitten basieren und nicht mit einfachen gleitenden Durchschnitten zusammenpassen. Diese Grafik zeigt Oracle (ORCL) mit dem 50-Tage EMA, 200-Tage EMA und MACD (50.200,1). Es gab vier gleitende durchschnittliche Kreuzungen über einen Zeitraum von 2 1/2 Jahren. Die ersten drei führten zu Peitschen oder schlechten Trades. Ein anhaltender Trend begann mit der vierten Crossover als ORCL bis Mitte der 20er Jahre. Erneut bewegen sich die durchschnittlichen Crossover-Effekte groß, wenn der Trend stark ist, erzeugen aber Verluste in Abwesenheit eines Trends. Preis-Crossover Moving-Durchschnitte können auch verwendet werden, um Signale mit einfachen Preis-Crossover zu generieren. Ein bullisches Signal wird erzeugt, wenn die Preise über dem gleitenden Durchschnitt liegen. Ein bäres Signal wird erzeugt, wenn die Preise unter dem gleitenden Durchschnitt liegen. Preis-Crossover können kombiniert werden, um innerhalb der größeren Trend Handel. Der längere gleitende Durchschnitt setzt den Ton für den größeren Trend und der kürzere gleitende Durchschnitt wird verwendet, um die Signale zu erzeugen. Man würde bullish Preiskreuze nur dann suchen, wenn die Preise schon über dem längeren gleitenden Durchschnitt liegen. Dies würde den Handel im Einklang mit dem größeren Trend. Wenn zum Beispiel der Kurs über dem gleitenden 200-Tage-Durchschnitt liegt, würden sich die Chartisten nur auf Signale konzentrieren, wenn der Kurs über dem 50-Tage-Gleitender Durchschnitt liegt. Offensichtlich würde ein Schritt unterhalb der 50-Tage gleitenden Durchschnitt ein solches Signal vorausgehen, aber solche bearish Kreuze würden ignoriert, weil der größere Trend ist. Ein bearish Kreuz würde einfach vorschlagen, ein Pullback in einem größeren Aufwärtstrend. Ein Cross-Back über dem 50-Tage-Gleitender Durchschnitt würde einen Preisanstieg und eine Fortsetzung des größeren Aufwärtstrends signalisieren. Die nächste Tabelle zeigt Emerson Electric (EMR) mit dem 50-Tage EMA und 200-Tage EMA. Die Aktie bewegte sich über und hielt über dem 200-Tage gleitenden Durchschnitt im August. Es gab Dips unterhalb der 50-Tage-EMA Anfang November und wieder Anfang Februar. Die Preise schnell zurück über die 50-Tage-EMA zu bullish Signale (grüne Pfeile) in Harmonie mit dem größeren Aufwärtstrend. Im Indikatorfenster wird MACD (1,50,1) angezeigt, um Preiskreuze über oder unter dem 50-Tage-EMA zu bestätigen. Die 1-tägige EMA entspricht dem Schlusskurs. MACD (1,50,1) ist positiv, wenn das Schließen oberhalb der 50-Tage-EMA und negativ ist, wenn das Schließen unterhalb der 50-Tage-EMA liegt. Unterstützung und Widerstand Der Gleitende Durchschnitt kann auch als Unterstützung in einem Aufwärtstrend und Widerstand in einem Abwärtstrend dienen. Ein kurzfristiger Aufwärtstrend könnte Unterstützung nahe dem 20-tägigen einfachen gleitenden Durchschnitt finden, der auch in Bollinger-Bändern verwendet wird. Ein langfristiger Aufwärtstrend könnte Unterstützung nahe dem 200-tägigen einfachen gleitenden Durchschnitt finden, der der populärste langfristige bewegliche Durchschnitt ist. Wenn Tatsache, die 200-Tage gleitenden Durchschnitt bieten kann Unterstützung oder Widerstand, nur weil es so weit verbreitet ist. Es ist fast wie eine sich selbst erfüllende Prophezeiung. Die Grafik oben zeigt die NY Composite mit dem 200-Tage einfachen gleitenden Durchschnitt von Mitte 2004 bis Ende 2008. Die 200-Tage-Support zur Verfügung gestellt, mehrmals während des Vorhabens. Sobald der Trend mit einem Doppel-Top-Support-Pause umgekehrt, der 200-Tage gleitenden Durchschnitt als Widerstand um 9500 gehandelt. Erwarten Sie nicht genaue Unterstützung und Widerstand Ebenen von gleitenden Durchschnitten, vor allem längeren gleitenden Durchschnitten. Märkte werden durch Emotionen gefahren, wodurch sie anfällig für Überschreitungen sind. Statt genauer Ebenen können gleitende Mittelwerte verwendet werden, um Unterstützungs - oder Widerstandszonen zu identifizieren. Schlussfolgerungen Die Vorteile der Verwendung von bewegten Durchschnitten müssen gegen die Nachteile gewogen werden. Moving-Durchschnitte sind Trend nach, oder nacheilende, Indikatoren, die immer einen Schritt hinter sich. Dies ist nicht unbedingt eine schlechte Sache. Immerhin ist der Trend ist dein Freund und es ist am besten, in die Richtung des Trends Handel. Die gleitenden Durchschnitte gewährleisten, dass ein Händler dem aktuellen Trend entspricht. Auch wenn der Trend ist dein Freund, verbringen die Wertpapiere viel Zeit in Handelsspannen, die gleitende Durchschnitte ineffektiv machen. Einmal in einem Trend, bewegte Durchschnitte halten Sie in, sondern geben auch späte Signale. Don039t erwarten, an der Spitze zu verkaufen und an der Unterseite mit bewegten Durchschnitten kaufen. Wie bei den meisten technischen Analysetools sollten die gleitenden Mittelwerte nicht allein verwendet werden, sondern in Verbindung mit anderen komplementären Tools. Chartisten können gleitende Durchschnitte verwenden, um den Gesamttrend zu definieren und dann RSI zu verwenden, um überkaufte oder überverkaufte Niveaus zu definieren. Hinzufügen von Bewegungsdurchschnitten zu StockCharts Diagrammen Gleitende Durchschnitte sind als Preisüberlagerungsfunktion auf der SharpCharts-Workbench verfügbar. Mit dem Dropdown-Menü Overlays können Benutzer entweder einen einfachen gleitenden Durchschnitt oder einen exponentiellen gleitenden Durchschnitt auswählen. Der erste Parameter wird verwendet, um die Anzahl der Zeitperioden einzustellen. Ein optionaler Parameter kann hinzugefügt werden, um festzulegen, welches Preisfeld in den Berechnungen verwendet werden soll - O für die Open, H für High, L für Low und C für Close. Ein Komma wird verwendet, um Parameter zu trennen. Ein weiterer optionaler Parameter kann hinzugefügt werden, um die gleitenden Mittelwerte nach links (vorbei) oder nach rechts (zukünftig) zu verschieben. Eine negative Zahl (-10) würde den gleitenden Durchschnitt auf die linken 10 Perioden verschieben. Eine positive Zahl (10) würde den gleitenden Durchschnitt auf die rechten 10 Perioden verschieben. Mehrere gleitende Durchschnitte können dem Preisplot überlagert werden, indem einfach eine weitere Überlagerungslinie zur Werkbank hinzugefügt wird. StockCharts-Mitglieder können die Farben und den Stil ändern, um zwischen mehreren gleitenden Durchschnitten zu unterscheiden. Nachdem Sie eine Anzeige ausgewählt haben, öffnen Sie die erweiterten Optionen, indem Sie auf das kleine grüne Dreieck klicken. Erweiterte Optionen können auch verwendet werden, um eine gleitende mittlere Überlagerung zu anderen technischen Indikatoren wie RSI, CCI und Volumen hinzuzufügen. Klicken Sie hier für ein Live-Diagramm mit mehreren verschiedenen gleitenden Durchschnitten. Verwenden von Moving Averages mit StockCharts-Scans Hier finden Sie einige Beispielscans, die die StockCharts-Mitglieder verwenden können, um verschiedene gleitende Durchschnittssituationen zu scannen: Bullish Moving Average Cross: Diese Scans suchen nach Aktien mit einem steigenden 150-Tage-Durchschnitt und einem bullishen Kreuz der 5 Tag EMA und 35-Tage EMA. Der 150-Tage gleitende Durchschnitt steigt, solange er über seinem Niveau vor fünf Tagen handelt. Ein bullish Kreuz tritt auf, wenn die 5-Tage-EMA bewegt sich über dem 35-Tage-EMA auf überdurchschnittlichen Volumen. Bearish Moving Average Cross: Diese Scans sucht nach Aktien mit einem fallenden 150-Tage einfachen gleitenden Durchschnitt und einem bärischen Kreuz der 5-Tage EMA und 35-Tage EMA. Der 150-Tage gleitende Durchschnitt fällt, solange er unter seinem Niveau vor fünf Tagen handelt. Ein bäriges Kreuz tritt auf, wenn die 5-Tage-EMA unterhalb der 35-Tage-EMA auf überdurchschnittlichem Volumen bewegt. Weitere Studie John Murphy039s Buch hat ein Kapitel gewidmet gleitende Durchschnitte und ihre verschiedenen Verwendungen. Murphy deckt die Vor-und Nachteile der gleitenden Durchschnitte. Darüber hinaus zeigt Murphy, wie bewegte Durchschnitte mit Bollinger Bands und kanalbasierten Handelssystemen funktionieren. Technische Analyse der Finanzmärkte John MurphyExploring Die exponentiell gewichteten Moving Average Volatility ist die häufigste Maßnahme des Risikos, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, finden Sie unter Verwenden von Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächlichen Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, es ist wirklich nur ein Durchschnitt der quadrierten periodischen Renditen. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also Alpha (a) ein Gewichtungsfaktor (speziell eine 1 / m) ist, dann sieht eine einfache Varianz so aus: Die EWMA verbessert die einfache Varianz Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Yesterdays (sehr jüngste) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Mittelwert (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre tägliche Aktienkursdaten, das sind 509 tägliche Renditen und 1/509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit verringern, so dass eine einfache Varianz künstlich hoch sein könnte. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkenden Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet mit Lambda) plus der gestrigen Rückkehr (gewogen durch ein Minus-Lambda). Beachten Sie, wie wir nur zwei Begriffe zusammenfügen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Renditen. (VIX) Der CBOE Volatility Index (VIX) misst die Erwartungen an die Volatilität in den nächsten 30-Sessions mit Put - und Call-Optionen Ihrer Berechnungen. Während sich VIX auf SampP 500-Daten konzentriert, können Händler und Hedger auch Nasdaq-100 über CBOE Nasdaq Volatility Index (VXN) und Dow Jones Industrial Average über den CBOE DJIA Volatility Index (VXD) untersuchen. Die auf VIX angewandten gleitenden Durchschnitte bilden die Basis für eine breite Palette von Kauf - und Verkaufsstrategien in breit angelegten Instrumenten wie dem SPDR Trust (SPY) sowie volatilitätsbasierten Futures Verträge und Exchange Traded Funds, die umfassen: CBOE Volatility Index Futures (VX) SampP 500 VIX Short Term Termingeschäfte ETN (VXX) VIX Short Term Termingeschäfte ETF (VIXY) SampP 500 VIX Mittelfristige Futures ETN (VXZ) Um technische Analysen direkt auf den Index anzuwenden, wobei Futures oder Fondsberechnungen vermieden werden, da die Preisbildung in diesen Instrumenten durch Rollausbeute und Contango abnimmt. Die zeitliche Abweichungen zwischen den zukünftigen und den Spotpreisen widerspiegeln. Smart Händler können diese Verschlechterung durch rollende Futures-Kontrakte zu überwinden. Aber Fonds verfolgen kontinuierliche Charts, die sie für Haltedauer länger als ein paar Tage nicht geeignet machen. Trader messen die Volatilitätstrends mit lang - und kurzfristigen VIX-Charts und suchen nach Sympathie, Optionen und Futures-Engagements. Rising VIX tendiert dazu, die Korrelation zwischen den Aktienindizes und den zugrunde liegenden Komponenten zu erhöhen, wodurch die Indexfonds attraktiver als einzelne Wertpapiere werden. Falling VIX kehrt diese Gleichung um und unterstützt einen Aktienmarkt, in dem einzelne Wertpapiere bessere Handelschancen bieten als Indexfonds. Intraday VIX Moving Averages Die intraday VIX Chart bietet eine wichtige interne Messung der Volatilität und Risikostimmung über kurze Zeitrahmen. Die Rückmeldung kann als verlässlicher, aber ergänzender Eintragsauslöser für Handelskörbe verwendet werden, die die Risikoannahme (Kauf von Wachstumsinstrumenten und Verkauf von Verteidigungsinstrumenten) oder Risikoaversion (Kauf von Verteidigungsinstrumenten und Verkauf von Wachstumsinstrumenten) favorisieren. Ein 15-Minuten-Zeitrahmen funktioniert gut für diesen Zweck, mit Schwerpunkt auf Stornierungen, die Stimmung ändern Verschiebungen während des Börsentages. Allerdings können intraday VIX-Muster zerlumpt aussehen, so dass es schwer, zuverlässige Signale zu finden. Die Platzierung eines 10-bar SMA über Preis-Aktion glättet diese Kurven, erhöht das Signal und reduziert gleichzeitig das Rauschen. Zusammen mit NYSE TICK und Fortschritt: Rückgang Daten kann das Trio der Indikatoren Preis und Stimmung Schaukeln mit überraschender Genauigkeit zu lesen. In diesem Beispiel zeigt eine 10-stufige SMA über 15-Minuten-VIX fünf Tastenumdrehungen in sechs Sitzungen, während die zugrunde liegende Indikator hin und her schaltet mindestens ein Dutzend Mal. Bei höheren oder niedrigeren Werten verzeichnet der gleitende Durchschnitt, wie zwischen dem 11. und 13. August, einen deutlichen Markteintritt. Der SampP 500-Index verkaufte in diesem Zeitraum mehr als 50 Punkte (A), bevor er bei einer Intraday - ), Dass eine 34-Punkte-Intraday-Recovery vorgestellt. Diese kurzfristige Analyse funktioniert weniger zuverlässig in ruhiger Sitzungen am 14. und 17. August, mit dem gleitenden Durchschnitt Schleifen eine Reihe von kurzfristigen Höhen und Tiefen. Es fängt einen frühen Ausverkauf ein (C) und eine Nachmittagssprung (D) am 14., aber schlägt bis zum Nachmittag des 17. (F) Stunden nicht nach Stunden, nachdem der Markt aus einem schwachen offenen (E) . Die VIX schließt diese Sitzung im grünen trotz gesunder SampP 500 Gewinne, signalisiert eine geringfügige bärische Divergenz. Tägliche und wöchentliche VIX-Bewegungsdurchschnitte Die gleitenden Mittelwerte der täglichen und wöchentlichen VIX messen langfristige Verschiebungen der Marktstimmung sowie Schockereignisse, die vertikale Spikes aus den Basismodellen auslösen. Diese plötzlichen Erhöhungen der Angst Ebenen. Ob in Reaktion auf destabilisierende Wirtschaftsdaten oder Naturkatastrophen wie dem japanischen Tsunami 2011, haben einen sofortigen negativen Einfluss auf die Anlegerpsychologie. Die einen emotionalen Verkaufsdruck auslösen, der zu einem deutlichen Rückgang der Weltmärkte führen kann. Die 50- und 200-Tage-EMA arbeiten auf der täglichen VIX-Chart gut zusammen. Gleitende durchschnittliche Kreuze können signifikante psychologische Verschiebungen markieren, wobei die 50-Tage-Kreuzung unterhalb der 200-Tage-Signalisierung die Stimmung verbessert hat, während die 50-Tage-Kreuzung über die 200-Tage-Verschlechterung hinweist. Zum Beispiel geht ein 50-Tage über 200-Tage-Crossover (A) im Oktober 2014 einem 145-Punkte-SampP 500-Selloff voran. Kreuze treten routinemäßig als Folge von vertikalen Spikes und nachfolgenden Wiederherstellungen auf, was dem beobachtendem Techniker erlaubt, die Verschiebung zwischen steigender Angst und einer Rückkehr zur Selbstzufriedenheit zu verkürzen. Ein 20-Tage-Bollinger-Band, das auf zwei Standardabweichungen eingestellt ist, fügt der täglichen VIX-Analyse beträchtliche Informationen hinzu, wobei vertikale Spikes, wie im Oktober (B) und Dezember (C), außerhalb des oberen Bandes eine Pause oder Umkehr signalisieren. Spätere Spikes laufen in den verborgenen Widerstand an der horizontalen oberen Band, wodurch drei Umkehrungen im Januar und Februar (D, E, F). Die wöchentliche VIX-Chart verfolgt langfristige Stimmungsumschwünge, einschließlich des Übergangs zwischen Bullen - und Bärenmärkten. Das Verhältnis zwischen VIX und dem 200-Wochen-EMA ist in dieser Hinsicht besonders nützlich, wie Sie sehen können, wenn man das Diagramm zwischen 2003 und 2011 betrachtet. Die 200-tägige EMA wurde Widerstand, als der Preis im Jahr 2003 durch den gleitenden Durchschnitt fiel Neuen Hausse-Markt, und montiert es erfolgreich im Sommer 2007, nur zwei Monate vor der zyklischen Spitze. Dieser analytische Prozess funktionierte in den kommenden vier Jahren weiterhin gut, wobei sich Mitte des Jahres 2009, nur wenige Monate nach dem Bärenmarkt, die Preisdichte unterhalb der 200-Tage-EMA niederschlägt. Es durchbohrte dieses Niveau während des Mai 2010-Blitzabsturzes aber arbeitete seine Weise unten durch den Sommer und zeigte an, daß destabilizing Ereignis nicht einen neuen Bärenmarkt ausgelöst hatte. (Siehe Verwandte: Volatilitätsindex deckt Marktuntersuchungen auf.) Die Bottom Line Moving Averages, angewandt auf den CBOE SampP Volatility Index (VIX), glätten die natürliche Choppiness des Indikators und ermöglichen kurzfristigen Händlern und langfristigen Marktzeitgebern Zugang zu höchst zuverlässiger Stimmung Volatilitätsdaten.

No comments:

Post a Comment