Friday, 22 September 2017

Trading System Architecture Diagram


Trading Systems: Entwerfen Ihres Systems - Teil 1 13 Der vorangehende Abschnitt dieses Tutorials befasste sich mit den Elementen, aus denen sich ein Handelssystem zusammensetzte, und erörterten die Vor - und Nachteile der Verwendung eines solchen Systems in einem Live-Trading-Umfeld. In diesem Abschnitt bauen wir dieses Wissen auf, indem wir untersuchen, welche Märkte für den Systemhandel besonders gut geeignet sind. Wir werden dann einen tieferen Einblick in die unterschiedlichen Gattungen der Handelssysteme nehmen. Handel auf verschiedenen Märkten Aktienmärkte Der Aktienmarkt ist wahrscheinlich der häufigste Markt für den Handel, vor allem bei Anfängern. In dieser Arena, große Spieler wie Warren Buffett und Merrill Lynch dominieren, und traditionelle Wert und Wachstum investierende Strategien sind bei weitem die häufigste. Dennoch haben viele Institutionen erheblich in die Konzeption, Entwicklung und Umsetzung von Handelssystemen investiert. Einzelne Investoren treten diesem Trend, wenn auch langsam, bei. Hier sind einige wesentliche Faktoren zu berücksichtigen, wenn Handelssysteme in Aktienmärkten: 13 Die große Menge an verfügbaren Aktien ermöglicht es Händlern, Systeme auf vielen verschiedenen Arten von Aktien - alles von extrem volatilen over-the-counter (OTC) Aktien zu testen Nicht-flüchtigen blauen Chips. Die Wirksamkeit der Handelssysteme kann durch die geringe Liquidität einiger Aktien, insbesondere OTC - und Pink Sheet-Probleme, begrenzt werden. Provisionen können in Gewinne von erfolgreichen Trades zu essen, und können Verluste zu erhöhen. OTC - und Pink Sheet Equities verursachen oft zusätzliche Provisionsgebühren. Die wichtigsten Handelssysteme sind diejenigen, die Wert suchen - das heißt, Systeme, die verschiedene Parameter verwenden, um festzustellen, ob ein Wert unterbewertet ist im Vergleich zu seiner bisherigen Leistung, seine Kollegen oder den Markt im Allgemeinen. Devisenmarkt Der Devisenmarkt oder Forex. Ist der größte und liquideste Markt der Welt. Die Weltregierungen, Banken und andere große Institutionen Handel Trillionen von Dollar auf dem Forex-Markt jeden Tag. Die Mehrheit der institutionellen Händler auf der Forex beruht auf Handelssystemen. Das gleiche gilt für Einzelpersonen auf dem Forex, aber einige Handel auf Wirtschaftsberichte oder Zinsauszahlungen basiert. Hier sind einige wichtige Faktoren im Auge zu behalten, wenn Handelssysteme im Forex-Markt: Die Liquidität in diesem Markt - aufgrund der riesigen Menge - Macht Handelssysteme genauer und effektiver. Es gibt keine Provisionen in diesem Markt, nur Spreads. Daher ist es viel einfacher, viele Transaktionen ohne Erhöhung der Kosten zu machen. Im Vergleich zur Menge der verfügbaren Aktien oder Rohstoffe ist die Anzahl der Währungen zum Handel begrenzt. Aber wegen der Verfügbarkeit von exotischen Währungspaaren - also Währungen aus kleineren Ländern - ist das Spektrum der Volatilität nicht unbedingt begrenzt. Die wichtigsten Handelssysteme in Forex verwendet werden, die folgen Trends (ein beliebtes Sprichwort auf dem Markt ist der Trend ist Ihr Freund), oder Systeme, die kaufen oder verkaufen auf Breakouts. Dies liegt daran, wirtschaftliche Indikatoren oft große Preisbewegungen auf einmal verursachen. Futures Equity, Forex und Rohstoffmärkte alle bieten Futures-Handel. Dies ist ein beliebtes Fahrzeug für den Systemhandel aufgrund der höheren Menge an Leverage zur Verfügung und die erhöhte Liquidität und Volatilität. Allerdings können diese Faktoren auf beide Arten schneiden: sie können entweder verstärken Sie Ihre Gewinne oder verstärken Sie Ihre Verluste. Aus diesem Grund ist der Einsatz von Futures in der Regel für fortgeschrittene individuelle und institutionelle Systemhändler vorbehalten. Dies liegt daran, Trading-Systeme in der Lage, Kapitalisierung auf dem Futures-Markt erfordern viel mehr Anpassung, Verwendung fortgeschrittener Indikatoren und viel länger dauern, um zu entwickeln. Also, Welches Bestes ist es bis zu den einzelnen Investoren zu entscheiden, welcher Markt am besten für den Systemhandel geeignet ist - jeder hat seine eigenen Vor-und Nachteile. Die meisten Menschen sind mehr vertraut mit den Aktienmärkten, und diese Vertrautheit macht die Entwicklung eines Handelssystems einfacher. Allerdings ist Forex häufig als die überlegene Plattform, um Handelssysteme laufen - vor allem unter erfahrenen Händlern. Darüber hinaus, wenn ein Händler beschließt, auf erhöhte Hebelwirkung und Volatilität zu nutzen, ist die Futures-Alternative immer offen. Letztendlich liegt die Wahl in den Händen des Systementwicklers. Typen von Trading-Systemen Trendfolgesysteme Die gebräuchlichste Methode des Systemhandels ist das Trendfolgesystem. In seiner grundlegendsten Form, wartet dieses System einfach für eine signifikante Preisbewegung, dann kauft oder verkauft in diese Richtung. Diese Art von Systembanken auf die Hoffnung, dass diese Preisbewegungen den Trend beibehalten werden. Moving Average Systems Häufig in der technischen Analyse verwendet. Ein gleitender Durchschnitt ist ein Indikator, der einfach den Durchschnittspreis einer Aktie über einen bestimmten Zeitraum anzeigt. Das Wesen der Trends wird aus dieser Messung abgeleitet. Der häufigste Weg, um Ein-und Ausfahrt zu bestimmen, ist ein Crossover. Die Logik dahinter ist einfach: Ein neuer Trend wird festgestellt, wenn der Preis unter oder über dem historischen Durchschnittspreis liegt (Trend). Hier ist ein Diagramm, das sowohl den Preis (blaue Linie) als auch die 20-Tage-MA (rote Linie) von IBM darstellt: Breakout Systems Das grundlegende Konzept hinter dieser Art von System ist ähnlich dem eines gleitenden Durchschnittssystems. Die Idee ist, dass, wenn ein neues hoch oder niedrig ist, die Preisbewegung höchstwahrscheinlich in Richtung des Ausbruchs fortsetzen wird. Ein Indikator, der bei der Bestimmung von Ausbrüchen verwendet werden kann, ist ein einfaches Bollinger-Band-Overlay. Bollinger Bands zeigen Mittelwerte von hohen und niedrigen Preisen, und Breakouts auftreten, wenn der Preis die Kanten der Bands. Hier ist ein Diagramm, das Preis (blaue Linie) und Bollinger Bands (graue Linien) von Microsoft: Nachteile von Trendfolgesystemen: Empirische Entscheidungsfindung erforderlich - Bei der Bestimmung von Trends gibt es immer ein empirisches Element zu beachten: die Dauer von Der historische Trend. Zum Beispiel könnte der gleitende Durchschnitt für die letzten 20 Tage oder für die letzten fünf Jahre sein, so muss der Entwickler bestimmen, welche am besten für das System ist. Weitere Faktoren, die zu bestimmen sind, sind die durchschnittlichen Höhen und Tiefs in Breakout-Systemen. Lagging Nature - Gleitende Mittelwerte und Breakout-Systeme werden immer rückläufig sein. Mit anderen Worten, sie können nie den genauen oberen oder unteren Rand eines Trends. Dies führt zwangsläufig zu einem Verlust der potenziellen Gewinne, die manchmal erheblich sein kann. Whipsaw Effect - Unter den Marktkräften, die für den Erfolg der Trendfolgesysteme schädlich sind, ist dies einer der häufigsten. Der Peitscheneffekt tritt auf, wenn der gleitende Durchschnitt ein falsches Signal erzeugt, dh wenn der Mittelwert nur in den Bereich fällt, kehrt die Richtung plötzlich um. Dies kann zu massiven Verlusten führen, sofern nicht wirksame Stop-Loss - und Risikomanagementtechniken eingesetzt werden. Sideways Markets - Trendfolgesysteme sind naturgemäß in der Lage, nur in Märkten Geld zu verdienen, die tatsächlich Trend treiben. Aber auch die Märkte bewegen sich seitwärts. Innerhalb eines bestimmten Bereichs für einen längeren Zeitraum. Extreme Volatilität kann auftreten - Gelegentlich können Trendfolgesysteme eine extreme Volatilität aufweisen, aber der Trader muss mit seinem System bleiben. Die Unfähigkeit, dies zu tun, wird zu einem versicherten Ausfall führen. Countertrend Systems Grundsätzlich ist das Ziel mit dem countertrend-System, auf dem niedrigsten Tief zu kaufen und an der höchsten Höhe zu verkaufen. Der Hauptunterschied zwischen diesem und dem Trendfolgesystem besteht darin, dass das Gegenströmungssystem nicht selbstkorrigiert wird. Mit anderen Worten, es gibt keine festgelegte Zeit, um Positionen zu verlassen, und dies ergibt ein unbegrenztes Abwärtspotenzial. Arten von Countertrend-Systemen Viele verschiedene Arten von Systemen werden als Countertrend-Systeme betrachtet. Die Idee hier ist zu kaufen, wenn Schwung in eine Richtung beginnt zu verblassen. Dies wird am häufigsten mit Oszillatoren berechnet. Zum Beispiel kann ein Signal erzeugt werden, wenn Stochastik oder andere relative Stärkeindikatoren unter bestimmte Punkte fallen. Es gibt andere Arten von Countertrend Handelssysteme, aber alle von ihnen teilen das gleiche grundlegende Ziel - zu kaufen niedrig und hoch verkaufen. Nachteile von Countertrend Folgende Systeme: E mpirische Entscheidungsfindung erforderlich - Einer der Faktoren, über die der Systementwickler entscheiden muss, sind die Punkte, an denen die relativen Stärkeindikatoren verblassen. Extreme Volatilität kann auftreten - Diese Systeme können auch eine extreme Volatilität aufweisen, und eine Unfähigkeit, mit dem System trotz dieser Volatilität zu bleiben, wird zu einem gesicherten Ausfall führen. Unlimited Downside - Wie bereits erwähnt, gibt es unbegrenztes Downside-Potential, da das System nicht selbstkorrigiert (es gibt keine eingestellte Zeit, um Positionen zu verlassen). Fazit Die wichtigsten Märkte, für die Handelssysteme geeignet sind, sind die Aktien-, Devisen - und Futures-Märkte. Jeder dieser Märkte hat seine Vor - und Nachteile. Die beiden wichtigsten Gattungen der Handelssysteme sind die Trendfolger und die Gegen-Trendsysteme. Trotz ihrer Unterschiede bedürfen beide Arten von Systemen in ihren Entwicklungsstadien einer empirischen Entscheidungsfindung seitens des Entwicklers. Auch diese Systeme unterliegen extremer Volatilität und dies kann verlangen, einige Ausdauer - es ist wichtig, dass der System-Trader mit seinem System während dieser Zeiten bleiben. In der folgenden Tranche nehmen Sie einen genaueren Blick auf, wie man ein Handelssystem entwerfen und etwas von der Software sprechen, die Systemhändler verwenden, um ihr Leben zu erleichtern. Trading Systems: Design Ihres Systems - Teil 2MPF Datenflussdiagramm MPF Einfaches Netzwerkdiagramm Das folgende Diagramm veranschaulicht ein einfaches Netzwerksetup013 zur Unterstützung der MPF-Architektur. In diesem Diagramm werden die XTRADER-Arbeitsstationen für alle API-Verbindungen (Aufträge, Preise, Fills usw.) als normal (zB TT CME-B, CME-C oder CME-D Gateways) 013 mit dem entsprechenden013 zugeordneten TT Gateway verbunden. Zugeordnete TT Gateways Route alle Preis-Abonnements and013 Resynch-Anfragen an den MPF-Server (benannt CME-A) für CME-Preise. Das Netzwerk ist eine gemischte Umgebung und auch Hosts von TT LIFFE-A013 und Eurex-A-Gateways, die als normale TT-Gateways konfiguriert sind. Trader can013 Zugang zu jedem dieser TT-Gateways für Preise, Bestellungen und Fills. Eine einzelne Instanz von Price Proxy läuft auf jedem Mapped Gateway. MPF Hochleistungsdiagramm Das folgende Diagramm veranschaulicht einen eigenständigen Price Proxy013, der eingerichtet wurde, um mehrere Austauschgeschmacksrichtungen desselben Marktes zu unterstützen. In diesem Diagramm werden XTRADER-Workstations mit dem entsprechenden 013 TT-CME-A - oder CME - B Gateway) für Order - und Fill-API-Verbindungen. XTRADER-Workstations verbinden sich mit Price Proxy für alle CME-A - und CME-B Price013-API-Verbindungen. Dedizierte Preis-Proxy-Routen-Preisabonnements und resynch013-Anfragen an den MPF-Server (CME-Z) für CME-Preise. TT unterstützt sowohl einzelne Instanz - als auch mehrere Instanzen von Price013 Proxy-Standalone-Servern. Jede Einrichtung verwendet eine ähnliche Netzwerktopologie wie oben beschrieben. MPF-Komponentendiagramm Das MPF-Architekturdiagramm veranschaulicht die folgende logical013-Architektur des MPF-Setups: Zwei TT-Gateways des gleichen Typs (z. B. TT-CME-Gateways) 013 laufen im Netzwerk. Einer ist ein MPF-Server und der andere ist ein mapped013 TT-Gateway. Der MPF-Server run013 nur die Price - und Guard-Server (alle anderen Server sind inaktiv013 in der ttchron. ini). Das abgebildete TT Gateway führt einen Price Proxy und alle Server013-Komponenten mit Ausnahme des Price Servers aus. Clientanwendungen verbinden sich mit dem zugeordneten TT Gateway013 für Aufträge, Fills, Produkt - und Vertragsdefinitionen, Schlüssel und login013-Authentifizierung und empfangen Multicast-Preisdaten vom MPF-Server. MPF-Sequenzdiagramm Das folgende Diagramm veranschaulicht den Datenfluss nach der Sequenz013 über die MPF-Architektur. Trading Floor Architecture Executive Übersicht Erhöhte Konkurrenz, ein höheres Marktdatenvolumen und neue regulatorische Anforderungen sind einige der treibenden Kräfte hinter den Branchenveränderungen. Unternehmen versuchen, ihre Wettbewerbsfähigkeit durch eine ständige Änderung ihrer Handelsstrategien und die Erhöhung der Geschwindigkeit des Handels. Eine tragfähige Architektur muss die neuesten Technologien aus Netzwerk - und Anwendungsdomänen beinhalten. Es muss modular sein, um einen überschaubaren Weg zu schaffen, um jede Komponente mit minimaler Unterbrechung des Gesamtsystems zu entwickeln. Die von diesem Papier vorgeschlagene Architektur basiert daher auf einem Dienstleistungsrahmen. Wir untersuchen Dienste wie Ultra-Low Latency Messaging, Latenzüberwachung, Multicast, Computing, Speicherung, Daten - und Anwendungsvirtualisierung, Trading-Resiliency, Handelsmobilität und Thin Client. Die Lösung für die komplexen Anforderungen der Handelsplattform der nächsten Generation muss mit einer ganzheitlichen Denkweise aufgebaut werden, die die Grenzen traditioneller Silos wie Business und Technologie oder Anwendungen und Vernetzung überschreitet. Ziel dieses Dokuments ist es, Leitlinien für den Aufbau einer Handelsplattform mit extrem niedriger Latenzzeit zur Verfügung zu stellen, während der Rohdurchsatz und die Nachrichtenrate sowohl für Marktdaten als auch für FIX-Handelsaufträge optimiert werden. Um dies zu erreichen, schlagen wir die folgenden Latenzreduktionstechnologien vor: High-Speed-InterconnectInfiniBand oder 10 Gbit / s-Konnektivität für das Handels-Cluster Hochgeschwindigkeits-Messaging-Bus Anwendungsbeschleunigung über RDMA ohne Anwendung Recoder Echtzeit-Latenzüberwachung und - umkehrung von Trading Traffic auf den Pfad mit minimaler Latenz Branchentrends und Herausforderungen Trading-Architekturen der nächsten Generation müssen auf erhöhte Anforderungen an Geschwindigkeit, Volumen und Effizienz reagieren. Zum Beispiel wird das Volumen der Optionen Marktdaten voraussichtlich verdoppeln, nachdem die Einführung von Optionen Penny-Handel im Jahr 2007. Es gibt auch regulatorische Anforderungen für die beste Ausführung, die Handhabung Preisaktualisierungen mit Raten, die Ansatz 1M msg / sec. Für den Austausch. Sie benötigen auch Sichtbarkeit in die Frische der Daten und Beweis, dass der Client die bestmögliche Ausführung erhalten hat. Kurzfristig sind Geschwindigkeit von Handel und Innovation die wichtigsten Unterscheidungsmerkmale. Eine zunehmende Anzahl von Trades werden durch algorithmische Handelsanwendungen behandelt, die so nah wie möglich an den Handelsausführungsort gebracht werden. Eine Herausforderung mit diesen quotblack-boxquot Handelsmotoren ist, dass sie die Volumenzunahme erhöhen, indem sie Aufträge nur annullieren und sie zurücksenden. Die Ursache für dieses Verhalten ist mangelnde Transparenz in die Veranstaltungsort bietet die beste Ausführung. Der menschliche Händler ist jetzt ein quotfinancial Ingenieur, ein quotquantquot (quantitativer Analytiker) mit Programmierungfähigkeiten, die handelnmodelle on the fly einstellen können. Unternehmen entwickeln neue Finanzinstrumente wie Wetterderivate oder Cross-Asset-Klassenhandel und müssen die neuen Applikationen schnell und skalierbar einsetzen. Langfristig sollte die Konkurrenzdifferenzierung nicht nur aus der Analyse, sondern auch aus der Analyse resultieren. Die Star-Trader von morgen übernehmen das Risiko, erreichen echte Kundeneinblicke und konsequent den Markt (Quelle IBM: www-935.ibm/services/us/imc/pdf/ge510-6270-trader. pdf). Die Business-Resilienz ist seit dem 11. September 2001 ein wichtiges Anliegen von Handelsunternehmen. Lösungen in diesem Bereich reichen von redundanten Rechenzentren, die sich in verschiedenen Regionen befinden und an mehrere Handelsplätze angeschlossen sind, an virtuelle Händlerlösungen, die Power Traders die meisten Funktionalitäten eines Handelsraums anbieten An einem entfernten Ort. Die Finanzdienstleistungsbranche zählt zu den anspruchsvollsten IT-Anforderungen. Die Branche erlebt einen architektonischen Wandel hin zu Services-Oriented Architecture (SOA), Web Services und Virtualisierung von IT-Ressourcen. SOA nutzt die Erhöhung der Netzwerkgeschwindigkeit, um eine dynamische Bindung und Virtualisierung von Softwarekomponenten zu ermöglichen. Dies ermöglicht die Erstellung neuer Anwendungen, ohne die Investitionen in bestehende Systeme und Infrastrukturen zu verlieren. Das Konzept hat das Potenzial, den Integrationsprozess zu revolutionieren, was eine deutliche Reduktion der Komplexität und Kosten einer solchen Integration ermöglicht (gigaspaces / download / MerrilLynchGigaSpacesWP. pdf). Ein weiterer Trend ist die Konsolidierung von Servern in Rechenzentrums-Serverfarmen, während Händler-Desks nur KVM-Erweiterungen und ultradünne Clients (z. B. SunRay - und HP-Blade-Lösungen) haben. Hochgeschwindigkeits-Metro Area Networks ermöglichen es, Marktdaten zwischen verschiedenen Standorten zu multicastieren und so die Virtualisierung des Handelsraums zu ermöglichen. High-Level-Architektur Abbildung 1 zeigt die Architektur einer Handelsumgebung auf hohem Niveau. Die Ticker-Anlage und die algorithmischen Trading Engines befinden sich im Hochleistungs-Trading-Cluster im Rechenzentrum der Firma oder an der Börse. Die menschlichen Händler befinden sich im Bereich der Endbenutzeranwendungen. Funktionell gibt es zwei Anwendungskomponenten im Enterprise-Trading-Umfeld, Verleger und Abonnenten. Der Messaging-Bus stellt den Kommunikationsweg zwischen Publishern und Abonnenten zur Verfügung. Es gibt zwei Arten von Traffic-spezifisch für ein Handelsumfeld: Market DataCarries Preisinformationen für Finanzinstrumente, Nachrichten und andere wertschöpfende Informationen wie Analytics. Es ist unidirektional und sehr Latenz empfindlich, in der Regel über UDP Multicast geliefert. Es wird in Updates / Sekunde gemessen. Und in Mbps. Marktdatenströme von einem oder mehreren externen Feeds, die von Marktdatenanbietern wie Börsen, Datenaggregatoren und ECNs kommen. Jeder Anbieter hat sein eigenes Marktdatenformat. Die Daten werden von Feedhandlern, spezialisierten Anwendungen, die die Daten normalisieren und reinigen, empfangen und an Datenverbraucher, wie z. B. Preistreiber, algorithmische Handelsanwendungen oder menschliche Händler, gesendet. Sell-Side-Unternehmen senden auch die Marktdaten an ihre Kunden, Buy-Side-Firmen wie Investmentfonds, Hedgefonds und andere Vermögensverwalter. Einige Buy-Side-Unternehmen können entscheiden, Direkt-Feeds von den Austausch, Reduzierung der Latenz zu erhalten. Abbildung 1 Trading-Architektur für eine Buy-Side / Sell Side Firm Es gibt keine Industrie-Standard für Markt-Daten-Formate. Jeder Austausch hat ihr eigenes Format. Finanzdienstleister wie Reuters und Bloomberg aggregieren verschiedene Quellen von Marktdaten, normalisieren sie und fügen Neuigkeiten oder Analysen hinzu. Beispiele für konsolidierte Feeds sind RDF (Reuters Data Feed), RWF (Reuters Wire Format) und Bloomberg Professional Services Data. Um Marktdaten mit geringerer Latenz zu liefern, haben beide Anbieter Echtzeit-Marktdaten-Feeds veröffentlicht, die weniger verarbeitet und weniger analytisch sind: Bloomberg B-PipeWith B-Pipe, Bloomberg dekoppelt ihre Marktdaten-Feeds von ihrer Vertriebsplattform aus Ist nicht erforderlich für get B-Pipe. Wombat und Reuters Feed-Handler haben angekündigt, Unterstützung für B-Pipe. Ein Unternehmen kann entscheiden, Feeds direkt von einem Austausch zu empfangen, um die Latenz zu reduzieren. Die Verstärkung der Übertragungsgeschwindigkeit kann zwischen 150 Millisekunden bis 500 Millisekunden liegen. Diese Feeds sind komplexer und teurer und die Firma muss ihre eigene Ticker-Anlage aufbauen und pflegen (financetech / featured / showArticle. jhtmlarticleID60404306). Trading OrdersThis Art von Traffic trägt die tatsächlichen Trades. Es ist bidirektional und sehr latenzempfindlich. Es wird in Nachrichten / Sek. Gemessen. Und Mbps. Die Aufträge stammen von einer Kaufseite oder Verkaufsseite Firma und werden an Handelsplätze wie eine Börse oder ECN zur Ausführung gesendet. Das häufigste Format für den Auftragsverkehr ist FIX (Financial Information eXchangefixprotocol. org/). Die Applikationen, die FIX-Meldungen verarbeiten, heißen FIX-Engines und operieren mit Order Management Systemen (OMS). Eine Optimierung für FIX heißt FAST (Fix Adapted for Streaming), das ein Komprimierungsschema verwendet, um die Nachrichtenlänge zu reduzieren und die Latenz zu reduzieren. FAST ist mehr auf die Bereitstellung von Marktdaten ausgerichtet und hat das Potenzial, ein Standard zu werden. FAST kann auch als Komprimierungsschema für proprietäre Marktdatenformate verwendet werden. Um die Latenz zu reduzieren, können sich Unternehmen entscheiden, Direct Market Access (DMA) zu errichten. DMA ist das automatisierte Verfahren, um einen Wertpapierauftrag direkt an einen Ausführungsort zu leiten und so die Intervention durch einen Dritten zu vermeiden (towergroup / research / content / glossary. jsppage1ampglossaryId383). DMA erfordert eine direkte Verbindung zum Ausführungsort. Der Messaging-Bus ist Middleware-Software von Anbietern wie Tibco, 29West, Reuters RMDS oder einer Open-Source-Plattform wie AMQP. Der Messaging-Bus verwendet einen zuverlässigen Mechanismus, um Nachrichten zu übermitteln. Der Transport kann über TCP / IP (TibcoEMS, 29West, RMDS und AMQP) oder UDP / Multicast (TibcoRV, 29West und RMDS) erfolgen. Ein wichtiges Konzept in der Nachrichtenverteilung ist der quottopische Stream, der eine Teilmenge von Marktdaten ist, die durch Kriterien wie Tickersymbol, Industrie oder einen bestimmten Korb von Finanzinstrumenten definiert sind. Abonnenten werden Themengruppen zugeordnet, die einem oder mehreren Unterthemen zugeordnet sind, um nur die relevanten Informationen zu erhalten. In der Vergangenheit erhielten alle Händler alle Marktdaten. Bei den derzeitigen Verkehrsmengen wäre dies suboptimal. Das Netzwerk spielt eine wichtige Rolle im Handelsumfeld. Die Marktdaten werden zum Handelsplatz getragen, wo sich die menschlichen Händler über ein Hochgeschwindigkeitsnetzwerk des Campus oder Metro Area befinden. Hohe Verfügbarkeit und niedrige Latenzzeiten sowie hoher Durchsatz sind die wichtigsten Kennzahlen. Die leistungsstarke Handelsumgebung verfügt über die meisten Komponenten in der Data Center-Serverfarm. Um die Latenz zu minimieren, müssen sich die algorithmischen Trading-Engines in der Nähe von Feed-Handlern, FIX-Engines und Order-Management-Systemen befinden. Ein alternatives Bereitstellungsmodell weist die algorithmischen Handelssysteme auf, die sich an einer Vermittlungsstelle oder einem Dienstanbieter mit schneller Konnektivität zu mehreren Vermittlungsstellen befinden. Bereitstellungsmodelle Es gibt zwei Bereitstellungsmodelle für eine leistungsfähige Handelsplattform. Die Unternehmen haben die Wahl zwischen einem Rechenzentrum der Handelsgesellschaft (Abbildung 2) Dies ist das traditionelle Modell, in dem eine vollwertige Handelsplattform von der Firma entwickelt und betrieben wird, die über Kommunikationsverbindungen zu allen Handelsplätzen verfügt. Latenz variiert mit der Geschwindigkeit der Links und die Anzahl der Hops zwischen der Firma und den Veranstaltungsorten. Abbildung 2 Traditionelles Bereitstellungsmodell Koordination am Handelsplatz (Börsen, Finanzdienstleister (FSP)) (Abbildung 3) Das Handelsunternehmen entfaltet seine automatisierte Handelsplattform so nah wie möglich an den Ausführungsorten, um die Latenz zu minimieren. Abbildung 3 Verteilungsmodell-Services-orientierte Trading-Architektur Wir schlagen ein dienstleistungsorientiertes Framework für den Aufbau der Handelsarchitektur der nächsten Generation vor. Dieser Ansatz bietet einen konzeptionellen Rahmen und einen Implementierungspfad, der auf Modularisierung und Minimierung von Abhängigkeiten beruht. Dieses Framework stellt Unternehmen eine Methodologie zur Verfügung, um ihren gegenwärtigen Zustand in Bezug auf Dienstleistungen zu bewerten Priorisierung der Dienste basierend auf ihrem Wert für das Unternehmen Entwickeln Sie die Handelsplattform in den gewünschten Zustand mit einem modularen Ansatz Die Hochleistungs-Handelsarchitektur setzt auf die folgenden Dienstleistungen, wie Definiert durch das in Abbildung 4 dargestellte Service-Architektur-Framework. Abbildung 4 Service Architektur Framework für High Performance Trading Ultra-Low Latency Messaging Service Dieser Service wird von dem Messaging-Bus bereitgestellt, der ein Softwaresystem ist, Viele Anwendungen. Das System besteht aus: Ein Satz von vordefinierten Nachrichtenschemata Ein Satz von gemeinsamen Befehlsnachrichten Eine gemeinsame Anwendungsinfrastruktur zum Senden der Nachrichten an Empfänger. Die gemeinsame Infrastruktur kann auf einem Message-Broker oder einem Publish / Subscribe-Modell basieren. Die wichtigsten Anforderungen für den Messaging-Bus der nächsten Generation (Quelle 29West): Niedrigstmögliche Latenzzeit (zB weniger als 100 Mikrosekunden) Stabilität bei hoher Last (zB mehr als 1,4 Millionen msg / Sek.) Kontrolle und Flexibilität (Ratensteuerung und konfigurierbare Transporte) ) Es gibt Anstrengungen in der Branche, den Messaging-Bus zu standardisieren. Advanced Message Queuing Protocol (AMQP) ist ein Beispiel eines offenen Standards, der von J. P. Morgan Chase unterstützt und von einer Gruppe von Anbietern wie Cisco, Envoy Technologies, Red Hat, TWIST Process Innovations, Iona, 29West und iMatix unterstützt wird. Zwei der Hauptziele sind, einen einfacheren Weg zur Interoperabilität für Anwendungen bereitzustellen, die auf verschiedenen Plattformen und Modularität geschrieben sind, so dass die Middleware einfach entwickelt werden kann. Ganz allgemein ist ein AMQP-Server analog zu einem E-Mail-Server, wobei jede Vermittlungsstelle als Nachrichtenübertragungsagent und jede Nachrichtenwarteschlange als Mailbox fungiert. Die Bindungen definieren die Routingtabellen in jedem Transferagent. Publisher senden Nachrichten an einzelne Übertragungsagenten, die dann die Nachrichten in Postfächer weiterleiten. Verbraucher nehmen Nachrichten aus Postfächern, die ein leistungsfähiges und flexibles Modell erstellen, das einfach ist (Quelle: amqp. org/tikiwiki/tiki-index. phppageOpenApproachWhyAMQP). Latency Monitoring Service Die wichtigsten Voraussetzungen für diesen Service sind: Granularität der Messungen in Millisekunden Echtzeit-Sichtbarkeit ohne Hinzufügung von Latenzzeiten für den Traffic Traffic Fähigkeit, die Latenz der Anwendungsverarbeitung von der Netzwerk-Transit-Latenz zu unterscheiden Fähigkeit, hohe Nachrichtenraten zu behandeln Bereitstellung einer programmgesteuerten Schnittstelle für Um Latenzdaten zu empfangen, so dass sich algorithmische Trading Engines an sich ändernde Bedingungen anpassen können. Korrelieren von Netzwerkereignissen mit Anwendungsereignissen für Fehlerbehandlungszwecke Latenzzeit kann als das Zeitintervall definiert werden, zwischen dem eine Trade Order gesendet wird, und wenn dieselbe Reihenfolge quittiert und gehandelt wird Von der empfangenden Partei. Die Lösung der Latenzproblematik ist ein komplexes Problem, das einen ganzheitlichen Ansatz erfordert, der alle Latenzquellen identifiziert und verschiedene Technologien auf verschiedenen Ebenen des Systems anwendet. Fig. 5 zeigt die Vielfalt der Komponenten, die Latenzzeiten an jeder Schicht des OSI-Stapels einbringen können. Es bildet auch jede Quelle der Latenz mit einer möglichen Lösung und einer Überwachungslösung ab. Dieser mehrschichtige Ansatz bietet Unternehmen eine strukturierte Möglichkeit, das Latenzproblem anzugreifen, wobei jede Komponente als Dienstleistung betrachtet und konsequent über das Unternehmen hinweg behandelt werden kann. Eine genaue Messung des dynamischen Zustands dieses Zeitintervalls über alternative Routen und Ziele kann bei taktischen Handelsentscheidungen eine große Hilfe sein. Die Fähigkeit, die genaue Lage der Verzögerungen zu identifizieren, sei es im Kundennetznetz, auf dem zentralen Verarbeitungsknoten oder auf der Transaktionsanwendungsebene, bestimmt entscheidend die Fähigkeit von Dienstanbietern, ihre vertraglichen Vereinbarungen auf Handelsniveau (SLAs) zu erfüllen. Für Buy-Side - und Sell-Side-Formulare sowie für Marktdaten-Syndikatoren erfolgt die schnelle Identifikation und Beseitigung von Engpässen direkt in verbesserte Handels - und Ertragsmöglichkeiten. Abbildung 5 Latenzmanagement-Architektur Cisco Low-Latency-Monitoring-Tools Traditionelle Netzwerk-Monitoring-Tools arbeiten mit Minuten oder Sekunden Granularität. Handelsplattformen der nächsten Generation, insbesondere solche, die den algorithmischen Handel unterstützen, erfordern Latenzen von weniger als 5 ms und extrem niedrige Paketverluste. Auf einem Gigabit-LAN ​​kann ein 100-ms-Microburst verursachen, dass 10.000 Transaktionen verloren gehen oder übermäßig verzögert werden. Cisco bietet seinen Kunden eine Auswahl an Tools, um die Latenzzeiten in einer Handelsumgebung zu messen: Bandbreiten-Qualitätsmanager (BQM) (OEM von Corvil) Cisco AON-basierte Finanzdienstleistungs-Latenzüberwachungslösung (FSMS) Bandbreiten-Qualitätsmanager Bandwidth Quality Manager (BQM) 4.0 ist Ein Netzwerk-Performance-Management-Produkt der nächsten Generation, das es Kunden ermöglicht, ihr Netzwerk auf kontrollierte Latenz - und Verlustleistung zu überwachen und bereitzustellen. Während BQM nicht ausschließlich auf Handelsnetze ausgerichtet ist, ist die Mikrosekundenvisibilität in Kombination mit intelligenten Funktionen zur Bandbreitenoptimierung ideal für diese anspruchsvollen Umgebungen. Cisco BQM 4.0 implementiert eine breite Palette von patentierten und zum Patent angemeldeten Verkehrs - und Netzwerkanalysetechnologien, die dem Anwender eine noch nie dagewesene Sichtbarkeit und ein Verständnis der Optimierung des Netzwerks für maximale Anwendungsleistung bieten. Cisco BQM wird nun auf der Produktfamilie der Cisco Application Deployment Engine (ADE) unterstützt. Die Cisco ADE-Produktfamilie ist die Plattform für Cisco Network Management-Anwendungen. BQM-Vorteile Die Cisco BQM-Mikrosichtbarkeit ist die Fähigkeit, Latenz, Jitter und Verluste, die Verkehrsereignisse verursachen, zu detektieren, zu messen und zu analysieren, bis hin zu Mikrosekundenebenen mit einer Paketauflösung. Dadurch kann Cisco BQM die Auswirkungen von Verkehrsereignissen auf Netzwerklatenz, Jitter und Verlust erkennen und bestimmen. Kritisch für Handelsumgebungen ist, dass BQM Latenz-, Verlust - und Jitter-Messungen einseitig für TCP - und UDP - (Multicast-) Datenverkehr unterstützen kann. Das bedeutet, dass sie nahtlos sowohl für Trading - als auch für Marktdaten-Feeds berichtet. BQM erlaubt es dem Benutzer, einen umfassenden Satz von Schwellenwerten (gegen Microburst-Aktivität, Latenz, Verlust, Jitter, Auslastung usw.) auf allen Schnittstellen festzulegen. BQM betreibt dann eine Hintergrundwalzenpaketaufnahme. Wenn eine Schwellenverletzung oder ein anderes potentielles Leistungsverschlechterungsereignis auftritt, löst sie Cisco BQM aus, um die Paketaufnahme zur späteren Analyse auf dem Datenträger zu speichern. Dies ermöglicht dem Benutzer, den Anwendungsverkehr, der von der Leistungsverschlechterung betroffen war, zu untersuchen (quiethe victimsquot) und den Verkehr, der die Leistungsverschlechterung verursacht hat (quich der culpritsquot). Dies kann die Zeit für die Diagnose und Behebung von Netzwerkleistungsproblemen erheblich verkürzen. BQM ist auch in der Lage, detaillierte Empfehlungen für die Bereitstellung von Empfehlungen für die Bandbreite und Qualität der Dienste (QoS) bereitzustellen, die der Benutzer direkt anwenden kann, um die gewünschte Netzwerkleistung zu erreichen. BQM-Messungen veranschaulicht Um den Unterschied zwischen einigen der herkömmlicheren Messtechniken und der Sichtbarkeit von BQM zu verstehen, können wir einige Vergleichsgrafiken betrachten. Im ersten Satz von Graphen (Abbildung 6 und Abbildung 7) sehen wir die Differenz zwischen der Latenzzeit, die mit dem BQMs passivem Netzwerkqualitätsmonitor (PNQM) gemessen wird, und der Latenz, die durch die Injektion von Ping-Paketen alle 1 Sekunde in den Verkehrsstrom gemessen wird. In Abbildung 6 sehen wir die Latenz, die von 1-Sekunden-ICMP-Ping-Paketen für den realen Netzverkehr gemeldet wird (es wird durch 2 geteilt, um eine Schätzung für die Einwegverzögerung zu geben). Es zeigt die Verzögerung bequem unter etwa 5ms für fast die ganze Zeit. Abbildung 6 Latenz, die von 1-Sekunden-ICMP-Ping-Paketen für realen Netzwerkverkehr gemeldet wird In Abbildung 7. sehen wir die Latenz, die PNQM für denselben Traffic zur gleichen Zeit gemeldet hat. Hier sehen wir, dass wir durch die Messung der Einweg-Latenz der eigentlichen Anwendungspakete ein völlig anderes Bild erhalten. Hier wird die Latenz etwa 20 ms schweben, mit gelegentlichen Bursts weit höher. Die Erklärung ist, dass, weil ping sendet Pakete nur jede Sekunde, es ist völlig fehlt die meisten der Anwendungsverkehr Latenz. Tatsächlich zeigen die Ping-Ergebnisse typischerweise nur die Ausbreitungsverzögerung für die Rundreise anstelle der realistischen Anwendungslatenz im gesamten Netzwerk an. Abbildung 7 Latenz, die von PNQM für realen Netzwerkverkehr gemeldet wird Im zweiten Beispiel (Abbildung 8) sehen wir den Unterschied zwischen den angegebenen Linkbelastungs - oder Sättigungswerten zwischen einer 5-minütigen mittleren Ansicht und einer 5-ms-Microburst-Ansicht (BQM kann über Microbursts berichten Bis ungefähr 10-100 Nanosekunden Genauigkeit). Die grüne Linie zeigt, dass die durchschnittliche Auslastung bei 5-Minuten-Durchschnitten niedrig ist, möglicherweise bis zu 5 Mbits / s. Das Dunkelblau-Diagramm zeigt die 5 ms Mikroburst Aktivität, die zwischen 75 Mbits / s und 100 Mbits / s, die LAN-Geschwindigkeit effektiv. BQM zeigt dieses Granularitätsniveau für alle Anwendungen und es gibt auch klare Bereitstellungsregeln, die es dem Benutzer ermöglichen, diese Mikrobursts zu steuern oder zu neutralisieren. Abbildung 8: Unterschied zwischen einer 5-Minuten-Durchschnittsanzeige und einer 5-ms-Microburst-Ansicht BQM-Bereitstellung im Trading-Netzwerk Abbildung 9 zeigt eine typische BQM-Implementierung in einem Handelsnetzwerk. Abbildung 9 Typische BQM-Implementierung in einem Trading-Netzwerk BQM kann dann verwendet werden, um diese Arten von Fragen zu beantworten: Sind alle meine Gigabit-LAN-Kernverbindungen für mehr als X Millisekunden gesättigt Ist dies verursacht Verlust Welche Verbindungen würden am meisten von einem Upgrade auf Etherchannel oder profitieren 10 Gigabit-Geschwindigkeiten Was Anwendungsdatenverkehr verursacht die Sättigung meiner 1 Gigabit-Links Ist eines der Marktdaten erleben End-to-End-Verlust Wie viel zusätzliche Latenz der Failover-Rechenzentrum Erfahrung Ist dieser Link richtig dimensioniert, um mit microbursts befassen sind meine Händler Erhalten niedrige Latenz Updates aus der Marktdatenverteilungsschicht Sind sie sehen alle Verzögerungen größer als X Millisekunden In der Lage, diese Fragen einfach und effektiv zu sparen spart Zeit und Geld in den Betrieb des Handelsnetzes. BQM ist ein wichtiges Instrument, um die Sichtbarkeit in Marktdaten und Handelsumgebungen zu erhöhen. Es bietet körnige End-to-End-Latenzmessungen in komplexen Infrastrukturen, die umfangreiche Datenbewegungen erleben. Das effektive Erfassen von Microbursts in Sub-Millisekunden-Ebenen und das Empfangen von Expertenanalysen für ein bestimmtes Ereignis ist von unschätzbarem Wert für den Handel von Architekten. Empfehlungen zur Bereitstellung von intelligenter Bandbreite, wie Sizing und What-If-Analyse, sorgen für mehr Agilität, um auf volatile Marktbedingungen zu reagieren. Da die Explosion des algorithmischen Handels und die zunehmende Nachrichtenrate weiter anhält, bietet BQM in Verbindung mit dem QoS-Tool die Möglichkeit, QoS-Richtlinien zu implementieren, die kritische Handelsanwendungen schützen können. Cisco Financial Services Latency Monitoring-Lösung Cisco und Trading Metrics haben an Latenzüberwachungslösungen für den FIX-Auftragsfluss und die Marktdatenüberwachung zusammengearbeitet. Die Cisco AON-Technologie ist das Fundament für eine neue Klasse von Netzwerk-Embedded-Produkten und - Lösungen, die dazu beitragen, intelligente Netzwerke mit einer Anwendungsinfrastruktur zusammenzuführen, die auf serviceorientierten oder traditionellen Architekturen basiert. Trading Metrics ist ein führender Anbieter von Analytics-Software für Netzwerk-Infrastruktur und Anwendung Latenzüberwachung Zwecke (tradingmetrics /). Die Cisco AON Financial Services Latency Monitoring Solution (FSMS) korrelierte zwei Arten von Ereignissen an der Beobachtungsstelle: Netzwerkereignisse korrelierten direkt mit übereinstimmender Anwendung Nachrichtenhandling Handelsauftragsabwicklung und passende Marktaktualisierungsereignisse Mit Hilfe von Zeitstempeln, die zum Zeitpunkt der Erfassung in der network, real-time analysis of these correlated data streams permits precise identification of bottlenecks across the infrastructure while a trade is being executed or market data is being distributed. By monitoring and measuring latency early in the cycle, financial companies can make better decisions about which network serviceand which intermediary, market, or counterpartyto select for routing trade orders. Likewise, this knowledge allows more streamlined access to updated market data (stock quotes, economic news, etc.), which is an important basis for initiating, withdrawing from, or pursuing market opportunities. The components of the solution are: AON hardware in three form factors: AON Network Module for Cisco 2600/2800/3700/3800 routers AON Blade for the Cisco Catalyst 6500 series AON 8340 Appliance Trading Metrics MampA 2.0 software, which provides the monitoring and alerting application, displays latency graphs on a dashboard, and issues alerts when slowdowns occur (tradingmetrics/TMbrochure. pdf ). Figure 10 AON-Based FIX Latency Monitoring Cisco IP SLA Cisco IP SLA is an embedded network management tool in Cisco IOS which allows routers and switches to generate synthetic traffic streams which can be measured for latency, jitter, packet loss, and other criteria (cisco/go/ipsla ). Two key concepts are the source of the generated traffic and the target. Both of these run an IP SLA quotresponder, quot which has the responsibility to timestamp the control traffic before it is sourced and returned by the target (for a round trip measurement). Various traffic types can be sourced within IP SLA and they are aimed at different metrics and target different services and applications. The UDP jitter operation is used to measure one-way and round-trip delay and report variations. As the traffic is time stamped on both sending and target devices using the responder capability, the round trip delay is characterized as the delta between the two timestamps. A new feature was introduced in IOS 12.3(14)T, IP SLA Sub Millisecond Reporting, which allows for timestamps to be displayed with a resolution in microseconds, thus providing a level of granularity not previously available. This new feature has now made IP SLA relevant to campus networks where network latency is typically in the range of 300-800 microseconds and the ability to detect trends and spikes (brief trends) based on microsecond granularity counters is a requirement for customers engaged in time-sensitive electronic trading environments. As a result, IP SLA is now being considered by significant numbers of financial organizations as they are all faced with requirements to: Report baseline latency to their users Trend baseline latency over time Respond quickly to traffic bursts that cause changes in the reported latency Sub-millisecond reporting is necessary for these customers, since many campus and backbones are currently delivering under a second of latency across several switch hops. Electronic trading environments have generally worked to eliminate or minimize all areas of device and network latency to deliver rapid order fulfillment to the business. Reporting that network response times are quotjust under one millisecondquot is no longer sufficient the granularity of latency measurements reported across a network segment or backbone need to be closer to 300-800 micro-seconds with a degree of resolution of 100 igrave seconds. IP SLA recently added support for IP multicast test streams, which can measure market data latency. A typical network topology is shown in Figure 11 with the IP SLA shadow routers, sources, and responders. Figure 11 IP SLA Deployment Computing Services Computing services cover a wide range of technologies with the goal of eliminating memory and CPU bottlenecks created by the processing of network packets. Trading applications consume high volumes of market data and the servers have to dedicate resources to processing network traffic instead of application processing. Transport processingAt high speeds, network packet processing can consume a significant amount of server CPU cycles and memory. An established rule of thumb states that 1Gbps of network bandwidth requires 1 GHz of processor capacity (source Intel white paper on I/O acceleration intel/technology/ioacceleration/306517.pdf ). Intermediate buffer copyingIn a conventional network stack implementation, data needs to be copied by the CPU between network buffers and application buffers. This overhead is worsened by the fact that memory speeds have not kept up with increases in CPU speeds. For example, processors like the Intel Xeon are approaching 4 GHz, while RAM chips hover around 400MHz (for DDR 3200 memory) (source Intel intel/technology/ioacceleration/306517.pdf ). Context switchingEvery time an individual packet needs to be processed, the CPU performs a context switch from application context to network traffic context. This overhead could be reduced if the switch would occur only when the whole application buffer is complete. Figure 12 Sources of Overhead in Data Center Servers TCP Offload Engine (TOE)Offloads transport processor cycles to the NIC. Moves TCP/IP protocol stack buffer copies from system memory to NIC memory. Remote Direct Memory Access (RDMA)Enables a network adapter to transfer data directly from application to application without involving the operating system. Eliminates intermediate and application buffer copies (memory bandwidth consumption). Kernel bypass Direct user-level access to hardware. Dramatically reduces application context switches. Figure 13 RDMA and Kernel Bypass InfiniBand is a point-to-point (switched fabric) bidirectional serial communication link which implements RDMA, among other features. Cisco offers an InfiniBand switch, the Server Fabric Switch (SFS): cisco/application/pdf/en/us/guest/netsol/ns500/c643/cdccont0900aecd804c35cb. pdf. Figure 14 Typical SFS Deployment Trading applications benefit from the reduction in latency and latency variability, as proved by a test performed with the Cisco SFS and Wombat Feed Handlers by Stac Research: Application Virtualization Service De-coupling the application from the underlying OS and server hardware enables them to run as network services. One application can be run in parallel on multiple servers, or multiple applications can be run on the same server, as the best resource allocation dictates. This decoupling enables better load balancing and disaster recovery for business continuance strategies. The process of re-allocating computing resources to an application is dynamic. Using an application virtualization system like Data Synapses GridServer, applications can migrate, using pre-configured policies, to under-utilized servers in a supply-matches-demand process (networkworld/supp/2005/ndc1/022105virtual. htmlpage2 ). There are many business advantages for financial firms who adopt application virtualization: Faster time to market for new products and services Faster integration of firms following merger and acquisition activity Increased application availability Better workload distribution, which creates more quothead roomquot for processing spikes in trading volume Operational efficiency and control Reduction in IT complexity Currently, application virtualization is not used in the trading front-office. One use-case is risk modeling, like Monte Carlo simulations. As the technology evolves, it is conceivable that some the trading platforms will adopt it. Data Virtualization Service To effectively share resources across distributed enterprise applications, firms must be able to leverage data across multiple sources in real-time while ensuring data integrity. With solutions from data virtualization software vendors such as Gemstone or Tangosol (now Oracle), financial firms can access heterogeneous sources of data as a single system image that enables connectivity between business processes and unrestrained application access to distributed caching. The net result is that all users have instant access to these data resources across a distributed network (gridtoday/03/0210/101061.html ). This is called a data grid and is the first step in the process of creating what Gartner calls Extreme Transaction Processing (XTP) (gartner/DisplayDocumentrefgsearchampid500947 ). Technologies such as data and applications virtualization enable financial firms to perform real-time complex analytics, event-driven applications, and dynamic resource allocation. One example of data virtualization in action is a global order book application. An order book is the repository of active orders that is published by the exchange or other market makers. A global order book aggregates orders from around the world from markets that operate independently. The biggest challenge for the application is scalability over WAN connectivity because it has to maintain state. Todays data grids are localized in data centers connected by Metro Area Networks (MAN). This is mainly because the applications themselves have limitsthey have been developed without the WAN in mind. Figure 15 GemStone GemFire Distributed Caching Before data virtualization, applications used database clustering for failover and scalability. This solution is limited by the performance of the underlying database. Failover is slower because the data is committed to disc. With data grids, the data which is part of the active state is cached in memory, which reduces drastically the failover time. Scaling the data grid means just adding more distributed resources, providing a more deterministic performance compared to a database cluster. Multicast Service Market data delivery is a perfect example of an application that needs to deliver the same data stream to hundreds and potentially thousands of end users. Market data services have been implemented with TCP or UDP broadcast as the network layer, but those implementations have limited scalability. Using TCP requires a separate socket and sliding window on the server for each recipient. UDP broadcast requires a separate copy of the stream for each destination subnet. Both of these methods exhaust the resources of the servers and the network. The server side must transmit and service each of the streams individually, which requires larger and larger server farms. On the network side, the required bandwidth for the application increases in a linear fashion. For example, to send a 1 Mbps stream to 1000recipients using TCP requires 1 Gbps of bandwidth. IP multicast is the only way to scale market data delivery. To deliver a 1 Mbps stream to 1000 recipients, IP multicast would require 1 Mbps. The stream can be delivered by as few as two serversone primary and one backup for redundancy. There are two main phases of market data delivery to the end user. In the first phase, the data stream must be brought from the exchange into the brokerages network. Typically the feeds are terminated in a data center on the customer premise. The feeds are then processed by a feed handler, which may normalize the data stream into a common format and then republish into the application messaging servers in the data center. The second phase involves injecting the data stream into the application messaging bus which feeds the core infrastructure of the trading applications. The large brokerage houses have thousands of applications that use the market data streams for various purposes, such as live trades, long term trending, arbitrage, etc. Many of these applications listen to the feeds and then republish their own analytical and derivative information. For example, a brokerage may compare the prices of CSCO to the option prices of CSCO on another exchange and then publish ratings which a different application may monitor to determine how much they are out of synchronization. Figure 16 Market Data Distribution Players The delivery of these data streams is typically over a reliable multicast transport protocol, traditionally Tibco Rendezvous. Tibco RV operates in a publish and subscribe environment. Each financial instrument is given a subject name, such as CSCO. last. Each application server can request the individual instruments of interest by their subject name and receive just a that subset of the information. This is called subject-based forwarding or filtering. Subject-based filtering is patented by Tibco. A distinction should be made between the first and second phases of market data delivery. The delivery of market data from the exchange to the brokerage is mostly a one-to-many application. The only exception to the unidirectional nature of market data may be retransmission requests, which are usually sent using unicast. The trading applications, however, are definitely many-to-many applications and may interact with the exchanges to place orders. Figure 17 Market Data Architecture Design Issues Number of Groups/Channels to Use Many application developers consider using thousand of multicast groups to give them the ability to divide up products or instruments into small buckets. Normally these applications send many small messages as part of their information bus. Usually several messages are sent in each packet that are received by many users. Sending fewer messages in each packet increases the overhead necessary for each message. In the extreme case, sending only one message in each packet quickly reaches the point of diminishing returnsthere is more overhead sent than actual data. Application developers must find a reasonable compromise between the number of groups and breaking up their products into logical buckets. Consider, for example, the Nasdaq Quotation Dissemination Service (NQDS). The instruments are broken up alphabetically: This approach allows for straight forward network/application management, but does not necessarily allow for optimized bandwidth utilization for most users. A user of NQDS that is interested in technology stocks, and would like to subscribe to just CSCO and INTL, would have to pull down all the data for the first two groups of NQDS. Understanding the way users pull down the data and then organize it into appropriate logical groups optimizes the bandwidth for each user. In many market data applications, optimizing the data organization would be of limited value. Typically customers bring in all data into a few machines and filter the instruments. Using more groups is just more overhead for the stack and does not help the customers conserve bandwidth. Another approach might be to keep the groups down to a minimum level and use UDP port numbers to further differentiate if necessary. The other extreme would be to use just one multicast group for the entire application and then have the end user filter the data. In some situations this may be sufficient. Intermittent Sources A common issue with market data applications are servers that send data to a multicast group and then go silent for more than 3.5 minutes. These intermittent sources may cause trashing of state on the network and can introduce packet loss during the window of time when soft state and then hardware shorts are being created. PIM-Bidir or PIM-SSM The first and best solution for intermittent sources is to use PIM-Bidir for many-to-many applications and PIM-SSM for one-to-many applications. Both of these optimizations of the PIM protocol do not have any data-driven events in creating forwarding state. That means that as long as the receivers are subscribed to the streams, the network has the forwarding state created in the hardware switching path. Intermittent sources are not an issue with PIM-Bidir and PIM-SSM. Null Packets In PIM-SM environments a common method to make sure forwarding state is created is to send a burst of null packets to the multicast group before the actual data stream. The application must efficiently ignore these null data packets to ensure it does not affect performance. The sources must only send the burst of packets if they have been silent for more than 3 minutes. A good practice is to send the burst if the source is silent for more than a minute. Many financials send out an initial burst of traffic in the morning and then all well-behaved sources do not have problems. Periodic Keepalives or Heartbeats An alternative approach for PIM-SM environments is for sources to send periodic heartbeat messages to the multicast groups. This is a similar approach to the null packets, but the packets can be sent on a regular timer so that the forwarding state never expires. S, G Expiry Timer Finally, Cisco has made a modification to the operation of the S, G expiry timer in IOS. There is now a CLI knob to allow the state for a S, G to stay alive for hours without any traffic being sent. The (S, G) expiry timer is configurable. This approach should be considered a workaround until PIM-Bidir or PIM-SSM is deployed or the application is fixed. RTCP Feedback A common issue with real time voice and video applications that use RTP is the use of RTCP feedback traffic. Unnecessary use of the feedback option can create excessive multicast state in the network. If the RTCP traffic is not required by the application it should be avoided. Fast Producers and Slow Consumers Today many servers providing market data are attached at Gigabit speeds, while the receivers are attached at different speeds, usually 100Mbps. This creates the potential for receivers to drop packets and request re-transmissions, which creates more traffic that the slowest consumers cannot handle, continuing the vicious circle. The solution needs to be some type of access control in the application that limits the amount of data that one host can request. QoS and other network functions can mitigate the problem, but ultimately the subscriptions need to be managed in the application. Tibco Heartbeats TibcoRV has had the ability to use IP multicast for the heartbeat between the TICs for many years. However, there are some brokerage houses that are still using very old versions of TibcoRV that use UDP broadcast support for the resiliency. This limitation is often cited as a reason to maintain a Layer 2 infrastructure between TICs located in different data centers. These older versions of TibcoRV should be phased out in favor of the IP multicast supported versions. Multicast Forwarding Options PIM Sparse Mode The standard IP multicast forwarding protocol used today for market data delivery is PIM Sparse Mode. It is supported on all Cisco routers and switches and is well understood. PIM-SM can be used in all the network components from the exchange, FSP, and brokerage. There are, however, some long-standing issues and unnecessary complexity associated with a PIM-SM deployment that could be avoided by using PIM-Bidir and PIM-SSM. These are covered in the next sections. The main components of the PIM-SM implementation are: PIM Sparse Mode v2 Shared Tree (spt-threshold infinity) A design option in the brokerage or in the exchange.

No comments:

Post a Comment